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Abstract—Dielectric layers of alternating low and high dielectric
constant are useful as filters in the millimeter wave, infrared, and
optical regions, spanning a spectrum of about five decades. Trans-
mission line theory can be applied, with refractive index replacing
admittance.

The electrical or optical thicknesses of the layers are generally
integral multiples of the thinnest layer, but the reflection in the pass
band can be appreciably reduced by small adjustments in the layer
thicknesses. The theory is based on the concept of Herpin equivalent
index, which is the optical counterpart of image admittance used by
electrical engineers. The theory is reviewed and design data is

presented.
ID to form reflecting filters, both in optics [1]-[4]
and at millimeter wave frequencies [5]-[8].
Figure 1(a) shows a quarter-wave stack. It consists of
a number of dielectric layers or plates of alternating di-
electric constants. The square root of the dielectric con-
stant will be called the refractive index, and will be
denoted by the symbol #n. Usually, as is indicated in
Fig. 1, only two materials are used, and their refractive
indices are denoted by #; and n, in the figure. The elec-
trical or optical thickness of each layer is the same, and
is equal to one-quarter wavelength at a particular {re-
quency; at this frequency the maximum reflection is
obtained, since all the VSWR’s multiply at this fre-
quency to give the input VSWR.

The construction of a multilayer or multiplate di-
electric stack, such as is shown in Fig. 1(a), depends on
the frequency range. At optical frequencies the layers
are usually deposited by evaporation in a vacuum; at
microwave frequencies, separate dielectric plates can be
assembled. Historically, optical and microwave tech-
niques have developed separately, and so even terminol-
ogy differs appreciably. In optics, wavelength is taken
as the independent variable; in microwaves, frequency
is used as the independent variable. In optics, one mostly
uses reflectance and transmittance, which represent the
reflected and transmitted powers, respectively; at micro-
wave frequencies, one mostly expresses the performance
as attenuation (in decibels) or VSWR. (We shall use
primarily the notation developed by electrical engineers
in this paper.)

Figure 2 shows the performance of several quarter-
wave stacks as a function of the normalized frequency.

I. INTRODUCTION
IELECTRIC layers or plates can be cascaded
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(The normalized frequency is defined as the ratio of the
actual frequency f to some particular frequency fo; the
particular frequency fo in the case of Fig. 2 is that fre-
quency at which each dielectric layer or plate is one-
quarter wavelength thick.)

The values of the refractive indices for the curves of
Figs. 2 and 3 were chosen because two commonly used
optical materials are magnesium fluoride (of refractive
index 1.38) and zinc sulfide (of refractive index 2.3}, and
this makes it easier to compare our computed results
with previously published data [3].

The dielectric stacks, the characteristics of which are
plotted in Fig. 2, consist of an even number of equal-
thickness layers of alternating low and high refractive
indices; such a stack is symbolically described by (LH)?,
where 2x is the total number of layers. The refractive
index 7, of the end media was made equal to the geo-
metric mean of xny and n,, the refractive indices of the
layers, for computing the curves in Fig. 2. Thus, #n, is
equal to 1.78. This value of n, gives the best match in
the middle of the pass bands, which are centered at
normalized frequencies of 0, 2, 4, - - -, in Fig. 2, cor-
responding to layer thicknesses of 0, 180, 360, - - - elec-
trical degrees. Four cases are shown in Fig. 2; these are
two, four, eight, and sixteen layers. As the number of
layers is increased, the attenuation rises. At the same
time, the ripples in the pass band region also rise; for
example, for the case of the sixteen-layer stack, the
largest ripple just below the stop band is about 2% dB
high. This is a consequence of the periodic nature of the
stack. In order to improve this situation—that is, to
reduce the pass-band ripple—one has to resort to some
departure from periodicity.

A simple way to improve the match in either the lower
or upper pass band, as in Fig. 3, is to use end layers that
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Attenuation-vs.-frequency characteristics of several stacks of

Fig. 2.
dielectric layers or plates of the same thickness.

are one-half the thickness of the interior layers. Such
a stack is represented symbolically by either
[(/2)H(L/2))* or [(H/2)L(H/2)l*, where the total
number of layers is now 2x-1, including the two half-
thickness end layers.! Either type of stack, whether it
begins and ends with L/2 or with H/2, can be used as
a low-pass filter, and similarly either type can be used
as a high-pass filter. The characteristics are as shown in
Fig. 3, where Scale A refers to the low-pass filter and
Scale B refers to the high-pass filter. The type of filter
that results (low-pass or high-pass) is solely a function
of the choice of 7.

The principal results are summarized here. With
either type of filter, a low-pass characteristic results
when #ng is set equal to

19 = n11/2n21/2. (1)

A high-pass characteristic is obtained where n, is set
equal to

g = i g2, 2)

Let it be emphasized that #, refers to the refractive in-
dex starting with the exterior layers (see Fig. 1). Thus,
for the [(L/2)H(L/2)]* type of filter, #n1=n;=1.38,
and ne=nyp=2.3, to obtain Fig. 3; whereas for the
[(H/2)L(H/2)]* type of filter, n1=nyz=2.3 and
ny=n5=1.38. Thus, the numerical solution for ny from
(2) for the high-pass filter depends on whether the first
layer is of lower or higher refractive index. [However,
for the low-pass filter, #, and ns enter (1) symmetrically,
and so #, is the same for either type, regardless of
whether the exterior layers have the lower or higher
refractive index. |

The low-pass performance in Fig. 3, Scale A, holds for
stacks with n¢ equal to 1.78. Four cases are shown, with
x=1, 2, 4, and 8, so that the performance can conve-
niently be compared with the corresponding curves in
Fig. 2. It is seen that the ripples in the lower pass band

1 The letters L and H denote layers of low and high index, re-
spectively. The fraction refers to the thickness of the layer. Thus,
L/2 refers to a layer the electrical or optical thickness of which is
half that of a layer denoted by L. (See Fig. 5.).
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Fig. 3. Attenuation-vs.-frequency characteristics of several stacks
of dielectric layers with the two end layers of half the thickness of
the interior layers.

decrease at the expense of the ripples in the upper
pass band.

The high-pass performance in Fig. 3, Scale B, holds
both for [(L/2)H(L/2)] stacks with n, equal to 1.07 and
for [(H/2)L(H/2)] stacks with #,=2.97, according to
(2). If the refractive index #, is different from that re-
quired by (1) or (2), as appropriate, then a separate and
distinct matching problem exists in matching from a re-
fractive index of #:1/21,1% or n#?n,7/2, as the case may
be, to a refractive index of #; this matching problem
can be dealt with by methods described elsewhere, and
will not be considered further here. (References are
given in [16].)

The performance shown in Figs. 2 and 3 is also fairly
representative of the performance to be obtained with
stacks of polystyrene plates spaced with layers of air,
such as can be used at microwave frequencies. The rea-
son for this is that the ratio of the refractive index of
polystyrene to air is 1.6, which is very close to the ratio
2.3/1.38 (which is exactly 5/3).

The pass-band performance in Fig. 3 is better than
that in Fig. 2 because the end plates are only half as
thick as the interior plates [see Fig. 1(b)]. This can be
explained in terms of the concept of image impedance
[9], or the Herpin equivalent index [10], [11] which
will be explained in Section II.

Further control over the frequency response of a mul-
tilayer stack can be exercised by allowing the layers or
plates to be of different thicknesses, if necessary. This
was first demonstrated by Baumeister [12], [13] and
later by some Russian workers [14], [15] using a large
electronic digital computer to search for the optimum
solution. Image theory, or the Herpin index, can be used
at least in some problems to obtain the same or better
results with less labor and without the use of a digital
computer [16].

The bandwidth of the stop band is determined mostly
by the ratio of the two refractive indices of the materials
used in the stack, and is independent of the number of
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Fig. 4. Typical envelope of a large number of reflectance curves of
stacks with different numbers of layers.

plates or layers used. As the number of plates is in-
creased indefinitely, the reflectance-vs.-frequency curve
begins to look as shown in Fig. 4. The number of ripples
in the pass band increases indefinitely and their peaks
form an envelope shown by the broken line in Fig. 4.
The high reflectance zone shown shaded in Fig. 4 is
centered on a frequency fq, which is the frequency at
which each plate is one-quarter wavelength thick. High
reflectance is maintained over a bandwidth Af centered
on the frequency fo. The characteristics of the curve in
Fig. 4 can be worked out from image theory [3], [10],
[11]. It can be shown? that the fractional bandwidth of
the stop band is given by

Af 47T, By — #g .
— = —| sin! radians
fo T ny + g
1 . Ny — M2
= —| sin™!{ —————| degrees |. 3)
45 71 4 19

For example, if #;/#5 is equal to 5/3, then the fractional
bandwidth of the stop band given by (3) is close to
32.3 percent, which can also be seen in Figs. 2 and 3.

II. HerPIN EQUIVALENT LAYER

Any symimetrical combination of dielectric layers can
be replaced at any specified frequency by a single di-
electric layer having an “equivalent refractive index”
and an “equivalent electrical (or optical) thickness”
[10], [11], [17]. They are known as the Herpin equiv-
alent index and the Herpin equivalent thickness. (Of
course, the equivalent index and equivalent thickness
change with frequency.) This concept is basically the
same as that of “image admittance” and “image phase
constant” [9]. It is further explained in Section IV,
where numerical information is also displayed in graphi-
cal form.

In summary, dielectric stacks can be built up using
symmetrical three-layer stacks such as shown in Fig. 5.
It is convenient (but not necessary) to make the thick-
nesses of the two outer layers equal to exactly one-half
the thickness of the central layer. The total electrical
thickness of each stack in Fig. 5 is 20. There are two
cases to be considered. Figure 5(a) shows the first case,

2 For instance, by setting 4 =D = —1 in (11) of Section IV.
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in which the two outer layers have a refractive index,
#n1=nyz, that is less than the refractive index of the
central layer ny=ng; that is why the two outer layers
are marked with an L (for lower), and the central layer
is marked with an H (for higher). Figure 5(b) shows the
other case, in which the two outer layers have the higher
refractive index, n;=ngy, and are marked with a letter H,
while the central layer has the lower refractive index
ny=mnr, and is marked with a letter L.

We shall first illustrate with the special case (common
in optics)

nn = 1.38, “)

The Herpin equivalent index of the two cases shown in
Fig. 5 is plotted as a function of the total electrical or
optical thickness 28 of the basic period in Fig. 6. It is
seen that the Herpin equivalent index is not the same in
the two cases shown in Fig. 5. The Herpin equivalent
thickness is plotted in Fig. 7. In this case the result is
the same for both cases shown in Fig. 5. Figures 6 and 7
were obtained by plotting from the equations presented
in [11].

I1I. TransMissiON LINE EQUIVALENCE

The transmission (4 BCD) matrix for a single sheet of
dielectric having a relative dielectric constant of e (re-
fractive index n=+/¢, and a thickness of , at a wave-
length A, is

<27rnl> .. <27rn )
cos | —— j——sin|{—
A 7 A
n [ 2wnl 2wl
j—sin{— cos | ——

7 A A

where 7 is the intrinsic impedance of {ree space. The
ABCD matrix for a transmission line of length / having
a characteristic admittance Y, at a guide wavelength

Ay, s
27l [ 2x
cos (——) jV¢tsin| —
Ao Ag

(6)

(7
< 2al 2wl
7¥osin ) cos (-— >
Ag A
If the identification
A
Ay = — (8)
n
and
n
Yo = (9)
n

is made, the two matrices are identical. Thus, trans-
mission of optical waves through dielectric sheets may
be analyzed as transmission of electromagnetic waves
along cascaded transmission lines, and vice versa.

FEBRUARY

IV. THEORY

Consider the three cascaded dielectric layers shown
in Fig. 5. The layers consist of a dielectric sheet of
thickness /2 and having a refractive index #;, followed
by a dielectric sheet of thickness # and having a refrac-
tive index #2, followed by a third layer identical to the
first layer. Let the A BCD matrix for the composite be

4 jB
[ . ] (10)
jiCc D
Epstein [11] and Geppert [9] have shown that?
4 = D =cos?0 — L(r1z + 71571) sin2 6 11
B = n {31 + 3(ris + 71571)] sin 26
— 3(r12 — 7157 sin 6} (12)
C = m{3[1 + &(riz + 15 )] sin 20
+ 4(r12 — 7157Y) sin 6} (13)
where
T1a="MNg/ M1

# =Electrical or optical thickness of the center di-
electrical sheet
26 =Total electrical or optical thickness of the three-
layer stack.

The matrix of (10) may also be written as [17]

cos vy Yo tsiny
AR (14
j¥osin vy cos 7y
where
¥ =cos1 4 (15)
and
Heq C
Ve = = /‘/—— (16)
7 B

with 4, B, C given by (11), (12), and (13), respectively.

As noted by Guillemin [18] and Epstein [11], the
cascaded dielectric layers of Fig. 5 are, therefore, equiv-
alent to a single dielectric layer or line having an
equivalent refractive index e, [given by (16)] and an
equivalent electrical length of vy radians [given by (15)].

Equation (11) can be used to estimate the stop-band
attenuation. In the stop band the cosine term in (14) has
an imaginary argument, which is proportional to the
attenuation of one Herpin section. The attenuation for
x Herpin sections is then

a =~ 8.686x cosh™ [L(r15~r1271) sin? 6— cos? 8] decibels. an

This formula is only approximate, and does not take
into account the end media. [t is, therefore, more accurate
when the effect of the end media can be neglected,
which is the case when there are a large number of layers
in the stack.

3 The nomenclature used in (11), (12), and (13) differs from the
impedance terminology used by Geppert [9]. The correspondence be-
tween Geppert’s notation and that given here is given by (6) and (7).
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Figure & gives values of a quantity referred to as the
normalized Herpin equivalent refractive index, given by
(16) with 7 set equal to unity. Figure 8 is for values of
nr/ng from 0.1 to 1.0 in steps of 0.1, and for values of §
between 0% and 180°. (Here n 1, again represents the lower
refractive index, and ny the higher refractive index.)
Two special cases, nr/ny =0.625 and n;/ny=0.667, are
also given. These latter two cases correspond to ratios
of refractive index of air-to-polystyrene and air-to-
polyethylene. The quantity n. is obtained from Fig. 8
as will be explained. There are four cases to consider:

H H\ (1, < ny; ny = ng
Case I, |—L—

2 2 0 < 26 < 180°
H I H> {nz < ny; w1 = ng
2 2 180° < 20 < 360°

(£H£> {712 > ny; = Hg
2 2 0 < 26 < 180°

L L My > My Ny = Ay
(71{7) {180° <20 < 360°

The equivalent index of refraction for all four cases
can be obtained from Fig. 8 by the following rules. De-
fine the graph of Fig. 8 as giving the quantity 2 ="7%(26).
Also, » may now denote either #s/n, or ny/ns, whichever
is less. Then

Case 1I, <
Case I11I,

Case IV,

1) Case I, mneq = n1/h(20) (18)
ne < My, Ny = ng
for {
0 <6< 180°
2) Case IT " (19)
ase I1, #ey = ——
T n(360° — 29)
{llg < nyy, #N1 = ng
for
180° < 20 < 360°
3) Case ITI n (20)
ase ITI, #eq = ————
Y R(20)
Ne > M1y M1 = AL
for {
0 < 26 < 180°
4) Case IV, 1#1eq = n1h(360° — 20) (21)

1y = Ay,

{nz > ny;
for .
180° < 20 < 360°

Curves (not normalized) for all four cases are pre-
sented in Fig. 6, when the two refractive indices are 1.38
and 2.3, respectively.

The equivalent electrical or optical thickness v, de-
fined by (15) and denoted as the Herpin FEquivalent
Thickness, is shown in Fig. 9 for Cases I and 111 (i.e.,
0 <20 <180°). Define the curves of Fig. 9 as

v = v(20). (22)
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Then we have

Cases I and III, vy = v(26) (23)
for 0 < 6 < 180°.
Cases IT and IV, ~(20) = 360° — y(360° — 26) (24)

for 180° < 20 < 360°.

V. REFLECTION MAXIMA AND MINIMA
IN THE Pass BAND

Suppose that the end media are both the same, us for
the characteristics in Fig. 3. Then the filter will not
reflect whenever its total electrical or optical thickness
is a multiple of 180 degrees. Thus, if x=38, we look up
v on the ordinate scale at 22.5 degrees, 45 degrees, etc.,
up to 157.5 degrees, and read 26 on the abscissa. The
lower values of 20 differ very little irom #, the first value
being very close to 22.5 degrees for »=0.6. However,
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the last value is 143 degrees, differing appreciably from
157.5 degrees. Then we can convert to a normalized
frequency scale, with 20 =180 degrees corresponding to
a normalized frequency of unity; knowing the symmetry
of Fig. 9 (which is as for Fig. 7), we can find all the zero-
reflection frequencies in Fig. 3.

The position of the edge of the pass band can also be
estimated from Fig. 9. The filter will be matched just
outside the stop band, when its electrical or optical
total thickness is (x —1) times 180 degrees. Thus, if x =8,
and r=0.6, one looks up the ordinate at 180/x=22.5 de-
grees below 180 degrees; then one finds on the abscissa
the value 143 degrees, which is 37 degrees below 180
degrees. For a high-pass filter, the pass band would then
be expected to extend down to a normalized frequency
of 14+37/180=1.21. This is in fair agreement with
Fig. 5 of [16]. At the point where the ordinate scale
reaches 180 degrees in Fig. 9, which is also given by (3),
the filter already attenuates appreciably.

The positions of the reflection maxima can also be
found with the aid of Fig. 9. As before, consider identical
end media. Maximum reflection would occur for values
of v equal to an odd multiple of 90 degrees if the Herpin
equivalent index were independent of frequency. This
criterion enables one to predict all the reflection maxima
with very good (but not perfect) accuracy (since the
Herpin index does vary with irequency). The values of
the reflection maxima are determined from the maxi-
mum VSWR, which is very nearly equal to (7.q/70)%2,
whichever sign makes it greater than unity, since the
filter is then very nearly an odd number of quarter
wavelengths long. The Herpin equivalent index #eq can
be determined from Figs. 8 or 6, and #, is the refractive
index of the end media.

VI. OBLIQUE ANGLE OF INCIDENCE

Dielectric plates or layers can also be used as beam
splitters or quasi-optical directional couplers or filters
[19], [20]. The same basic theory still applies for that
case also. However, the refractive index has to be re-
placed by a function of the angle of incidence and is
different for parallel and normal polarizations.

When the electric vector is normal to the plane of in-
cidence (TE wave), then it can be shown [4] that the
effective refractive index, nesr, of a medium is

Hett = M COS 1,

(25)

where 7 is the actual refractive index of the medium,

and 7 is the angle of incidence inside the layer.
Similarly, when the electric vector is parallel to the

plane of incidence (TM wave), it can be shown [4] that

Hett = 1,/COS 1.

(26)

When 7 equals zero (normal incidence), both equations
reduce to the statement that the effective refractive in-
dex of the medium is equal to =.

The effective thickness of each layer for oblique inci-
dence is the actual thickness of the layer multiplied by
the cosine of the angle of incidence inside that layer.
For example, if there were only a single plate of thick-
ness d, its effective thickness is given by d cos ¢, where ¢
is the angle of transmittance (which is the angle of in-
cidence inside the plate, and is given by Snell’s law [4]).

VII. CoNCLUSIONS

The filter properties of dielectric multilayers were dis-
cussed. The concept of Herpin equivalent layer makes
it possible to simulate refractive index values that may
not be physically realizable. Design equations and de-
sign curves were presented. They can be used to mini-
mize the pass-band reflection by adjusting the layer
thicknesses [16]. The theory is also applicable to beam
splitters or directional filters.
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