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Low~Pass and High~Pass Filters Consisting c)f

Multilaym Dielectric Stacks
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Abstract—Dielectric layers of alternating low and high dielectric
constant are useful as filters in the millimeter wave, infrared, and

optical regions, spanning a spectrum of about five decades. Trans-
mission line theory can be applied, with refractive index replacing

admittance.

The electrical or optical thicknesses of the layers are generally
integral multiples of the thinnest layer, but the reflection in the pass

band can be appreciably reduced by small adjustments in the layer

thicknesses. The tlkeory is based on the concept of Herpin equivalent
index, which is the optical counterpart of image admittance used by
electrical engineers. The theory is reviewed and design data is
presented.

1. INTRODUCTION

D

IELECrIU C layers or plates can be cascaded

to form reflecting filters, both in optics [1]- [4]

and at millimeter wave frequencies [51– [8].

Figure 1 (a) shows a quarter-wave stack. It consists of

a number of dielectric layers or plates of alternating di-

electric constants. The square root of the dielectric con-

stant will be called the refractive index, and will be

denoted by the symbol n. Usually, as is indicated in

Fig. 1, only two materials are used, and their refractive

indices are denoted by nl and nz in the figure. The elec-

trical or optical thickness of each layer is the same, and

is equal to one-quarter wavelength at a particular fre-

quency; at this frequency the maximum reflection is

obtained, since all the VSWR’S multiply at this fre-

quency to give the input VSWR.

The construction of a multilayer or multiplate di-

electric stack, such as is shown in Fig. 1(a), depends on

the frequency range. At optical frequencies the layers

are usually deposited by evaporation in a vacuum; at

micro~~,ave frequencies, separate dielectric plates can be

assembled. Historically, optical and microwave tech-

niques have developed separately, and so even terminol-

ogy differs appreciably. In optics, wavelength is taken

as the independent variable; in microwaves, frequency

is used as the independent variable. In optics, one mostly

uses reflectance and transmittance, which represent the

reflected and transmitted powers, respectively; at micro-

~vave frequencies, one mostly expresses the performance

as attenuation (in decibels) or VSWR. (We shall use

primarily the notation developed by electrical engineers

in this paper.)

Figure 2 shows the performance of several quarter-

~Tave stacks as ;~ function of the normalized frequency.
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(The normalized frequency is defined as the ratio of the

actual frequency ~ to some particular frequency j“o; the

particular frequency fO in the case of Fig. 2 is that fre-

quency at which each dielectric layer or plate is one-

quarter wavelength thick.)

The values of the refractive indices for the curves of

Figs. 2 and 3 were chosen because two commonly used

optical materials are magnesium fluoride (of refractive

index 1.38) and zinc sulfide (of refractive index 2.3), iand

this makes it easier to compare our computed results

with previously published data [3].

The dielectric stacks, the characteristics of which are

plotted in Fig. 2, consist of an even number of equal-

thickness layers of alternating low and high refractive

indices; such a stack is symbolically described by (LH)’,

where 2X is the total number of layers. The refractive

index no of the end media was made equal to the geo-

metric mean of nl and nz, the refractive indices of the

layers, for computing the curves in Fig. 2. Thus, nO is

equal to 1.78. This value of nO gives the best match in

the middle of the pass bands, which are centerecl at

normalized frequencies of O, 2, 4, . . . , in Fig, 2, cor-

responding to layer thicknesses of O, 180, 360, . “ . elect-

rical degrees. Four cases are shown in Fig. 2; these are

two, four, eight, and sixteen layers. As the number of

layers is increased, the attenuation rises. At the same

time, the ripples in the pass band region also rise; for

example, for the case of the sixteen-layer stack, the

largest ripple just below the stop band is about 2+ dB

high. This is a consequence of the periodic nature of the

stack. In order to improve this situation~—that is, to

reduce the pass-band rippl~one has to resort to some

departure from periodicity.

A simple way to improve the match in either the lower

or upper pass band, as in Fig. 3, is to use end layers that
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Fig. 2. Attenuation-vs.-frequency characteristics of several stacks of
dielectric layers or plates of the same thickness.

are one-half the thickness of the interior layers. Such

a stack is represented symbolically by either

[(L/2 )H(L/2) ]’ or [(H/2 )L(I?/2)]Z, where the total

number of layers is now 2x+1, including the two half-

thickness end layers.1 Either type of stack, whether it

begins and ends with L/2 or with H/2, can be used as

a low-pass filter, and similarly either type can be used

as a high-pass filter. The characteristics are as shown in

Fig. 3, where Scale A refers to the low-pass filter and

Scale B refers to the high-pass filter. The type of filter

that results (low-pass or high-pass) is solely a function

of the choice of mo.

The principal results are summarized here, With

either type of filter, a low-pass characteristic results

when no is set equal to

?20= ?Zll%Z#/2.

A high-pass characteristic is obtained

equal to

?20 = ?213@z2-1/2.

(1)

where rzo is set

(2)

Let it be emphasized that nl refers to the refractive in-

dex starting with the exterior layers (see Fig, 1). Thus,

for the [(L/2 )H(L/2) ]’ type of filter, n,=n~= 1.38,

and ng = n~ = 2.3, to obtain Fig. 3; whereas for the

[(H/2 )_L(lZ/2)]’ type of filter, nl=n~=2.3 and

n! ‘fiL = 1.38. Thus, the numerical solution for no from

(2) for the high-pass filter depends on whether the first

Iayer is of Iower or higher refractive index. [However,

for the low-pass filter, nl and n2 enter (1) symmetrically,

and so no is the same for either type, regardless of

whether the exterior layers have the lower or higher

refractive index. ]

The low-pass performance in Fig-. 3, Scale A, holds for

stacks with no equal to 1.78. Four cases are shown, with

x = 1, 2, 4, and 8, so that the performance can conve-

niently be compared with the corresponding curves in

Fig. 2. It is seen that the ripples in the lower pass band

1 The letters L and H denote layers of low and high index, re-
spectively. The fraction refers to the thickness of the layer. Thus,
L/2 refers to a layer the electrical or optical thickness of which is
half that of a layer denoted by L. (See Fig. 5.).
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Fig, 3, Attenuation-vs.-frequency characteristics of several stacks
of dielectric layers with the two end layers of half the thickness of
the interior layers.

decrease at the expense of the ripples in the upper

pass band.

The high-pass performance in Fig. 3, Scale B, holds

both for [(L/2 )ll(L/2) ] stacks with no equal to 1.o7 and

for [(H/2 )L(H/2) ] stacks with no= 2.97, according to

(2). If the refractive index no is different from that re-

quired by (1) or (2), as appropriate, then a separate and

distinct matching problem exists in matching from a re-

fractive index of nY2n#2 or n13%Z-112, as the case may

be, to a refractive index of no: this matching problem

can be dealt with by methods described elsewhere, and

will not be considered further here. (References are

given in [16].)

The performance shown in Figs. 2 and 3 is also fairly

representative of the performance to be obtained with

stacks of polystyrene plates spaced with layers of air,

such as can be used at microwave frequencies. The rea-

son for this is that the ratio of the refractive index of

polystyrene to air is 1.6, which is very close to the ratio

2,3/1.38 (which is exactly 5/3).

The pass-band performance in Fig. 3 is better than

that in Fig. 2 because the end plates are only half as

thick as the interior plates [see Fig. 1 (b)]. This can be

explained in terms of the concept of image impedance

[9], or the Herpin equivalent index [10], [11] which

will be explained in Section II,

Further control over the frequency response of a mul-

tilayer stack can be exercised by allowing the layers or

plates to be of different thicknesses, if necessary. This

was first demonstrated by Baumeister [12], [13] and

later by some Russian workers [14], [1.s ] using a large

electronic digital computer to search for the optimum

solution. Image theory, or the Herpin index, can be used

at least in some problems to obtain the same or better

results with less labor and without the use of a digital

computer [16].

The bandwidth of the stop band is determined mostly

by the ratio of the two refractive indices of the materials

used in the stack, and is independent of the number of
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Fig. 4. Typical envelope of a large number of reflectance curves of
stat ks with different numbers of layers.

plates or layers used. As the number of plates is in-

creased indefinitely, the reflectance-vs.-frequency curve

begins to look as shown in Fig. 4. The number of ripples

in the pass band increases indefinitely and their peaks

form an envelope shown by the broken line in Fig. 4.

The high reflectance zone shown shaded in Fig. 4 is

centered on a frequency jo, which is the frequency at

which each plate is one-quarter wavelength thick. High

reflectance is maintained over a bandwidth Af centered

on the frequency ~o. The characteristics of the curve in

Fig. 4 can be worked out from image theory [3], [IO],

[Ii]. It can be shown’ that the fr

the stop band is given by

A~ 4

--[

?bl — ‘nZ
sin–l

jo=7r }21 + ‘?22

1

[

nl — X2
~ __ sin–l

!“~s ?’21+ Faz

cticmal bandwidth of

radians 1
1degrees . (3)

For example, if nl/ti, is equal to 5/3, then the fractional

bandwidth of the stop band given by (3) is close to

32.3 percent, which can also be seen in Figs. 2 and 3.

II. HERPIN EQUIVALENT LAYER

Any symmetrical combination of dielectric layers can

be replaced at any specified frequency by a single di-

electric lay-er having an ‘(equivalent refractive index”

and an ‘(equivalent electrical (or optical) thickness”

[1o], [11], [17]. They are known as the Herpin equiv-

alent index and the Herpin equivalent thickness. (Of

course, the equivalent index and equivalent thickness

change with frequency.) This concept is basically the

same as that of “image admittance” and “image phase

constant” [9]. It is further explained in Section IV,

where numerical information is also displayed in graphi-

cal form.

In summary, dielectric stacks can be built up using

symmetrical three-fa~er stacks such a~ ~how-n in Fig. 5.
It is convenient (but not necessary) to make the thick-

nesses of the two outer layers equal to exactly one-half

the thickness of the central layer. The total electrical

thickness of each stack in Fig. 5 is 20. There are two

cases to be considered, Figure 5 (a) shows the first case,

2 For instance, by setting A = D = — 1 in (1 1) of Section IV.
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in which the two outer layers have a refractive index,

ml= n~, that is less than the refractive index of the

central layer nz = n~; that is why the two outer layers

are marked with an L (for lower), and the central layer

is marked with an H (for higher). Figure 5(b) shows the

other case, in which the two outer layers have the higher

refractive index, nl = n~, and are marked with a letter H,

while the central layer has the lower refractive index

nZ = ?’L, and is marked with a letter L.

We shall first illustrate with the special case (common

in optics)

%L = 1.38, (4)

n~ = 2.3. (5)

The Herpin equivalent index of the two cases shown in

Fig. 5 is plotted as a function of the total electrical or

optical thickness 20 of the basic period in Fig. 6. It is

seen that the Herpin equivalent index is not the same in

the two cases shown in Fig. 5. The Herpin equivalent

thickness is plotted in Fig. 7. In this case the result is

the same for both cases shown in Fig. 5. Figures 6 and 7

were obtained by plotting from the equations presented

in [11].

III. TRANSMISSION LINE EQUIVALENCE

The transmission (ABCD) matrix for a single sheet of

dielectric having a relative dielectric constant of e (re-

fractive index n = ~<, and a thickness of 1, at a wave-

length X, is

[

2?rnl

()
Cos —

()
y

“1‘:s”(3 ‘:;; ‘6)

where q is the intrinsic impedance of free space. The

Al? CD matrix for a transmission line of length 1 having

a characteristic admittance Yo, at a guide wavelength

h,, is

[

2d

() ()

27r
Cos —

&
j YO–l sin ~

9

()

27d

1

27rl “

()

(7)

j YO sin ~ Cos --—
9 h,

If the identification

and

(8)

(9)
-0

is made, the two matrices are identical. Thus, trans-

mission of optical waves through dielectric sheets may

be analyzed as transmission of electromagnetic waves

along cascaded transmission lines, and vice versa.

IV. THEORY

Consider the three cascaded dielectric layers shown

in Fig. 5. The layers consist of a dielectric sheet of

thickness 0/2 and having a refractive index nl, followed

by a dielectric sheet of thickness 19and having a refrac-

tive index nz, followed by a third layer identical to the

first layer. Let the AB CD matrix for the composite be

A jB

[1jCD”
(lo)

Epstein [11 ] and Geppert [9] have shown that3

A = D = COS2O – ~(rlz + rlz–’) sin’ o (11)

B = til-l{~[l + ~(rl, + YI,-l)] sin 20

– *(Y12 – 712-’) sin 19} (12)

C = n~[~[l + ~(r~~ + r~z-’)] sin 20

+ *(Y12 – 71Z-1) sin 0} (13)

where

YIZ = n2/nl

O = Electrical or optical thickness of the center di-

electrical sheet

26= Total electrical or optical thickness of the three-

layer stack.

The matrix of (10) may also be written as [17]

[

Cos ‘y j Ye–l sin ~1 (14)
j YO sin ~ Cos ~

where

~ = COS–l A (15)

and

(16)

with A, 1?, C given by (11), (12), and (13), respectively.

As noted by Guillemin [18] and Epstein [11], the

cascaded dielectric layers of Fig. 5 are, therefore, equiv-

alent to a single dielectric layer or line having an

equivalent refractive index n.a [given by (16)] and an

equivalent electrical length of ~ radians [given by (15) ].

Equation (11) can be used to estimate the stop-band

attenuation. In the stop band the cosine term in (14) has

an imaginary argument, which is proportional to the

attenuation of one Herpin section. The attenuation for

x Herpin sections is then

a = 8.686x cosh–l [$(vIZ– rl~–l) sin2 O– COS2O] decibels. (17)

This formula is only approximate, and does not take

into account the end media, It is, therefore, more accurate

when the effect of the end media can be neglected,

which is the case when there are a large number of layers

in the stack.

3 The nomenclature used in (1 1), (12), and (13) differs from the
impedance terminology used by Geppert [9]. The correspondence be-
tween Geppert’s notation and that given here is given by (6) and (7).
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Figure 8 gives values of a quantity referred to as the

normalized Herpin equivalent refractive index, given by ‘O

(16) with ~ set equal to unity. Figure 8 is for values of a
nL/nH from 01.1 to 1.0 in steps of 0.1, and for values of 0 ~ o,

between 0° and 180°. (Here fiL again represents the lower ;

refractive index, and fiH the higher refractive index.) ~ ,,

Two special cases, fiL/%H = 0.625 and fiL/?tH = 0,667, are ~

also given. These latter two cases correspond to ratios ~ II& 04

of refractive index of air-to-polystyrene and air-to- $

polyethylene, The quantity n.. is obtained from Fig. 8 ~ ,,

as will be explained. There are four cases to consider: z

,=o,j

Ill
case11(:LW:::;;<T87H‘002040‘OTA’0’LEcTR’::LTH’cK’40 ‘6”’80

The equivalent index of refraction for all four cases

can be obtained from Fig. 8 by the follou-ing rules. De-

fine the graph of Fig. 8 as giving the quantity h= k(2t9).

Also, r may now denote either nZ/nl or nl/nZ, whichever

is less. Then

1) Case I, n.q = nJz(20) (18)

{

%2 < nl; ?61 = %H
for

0<0<180°

?l 1

2) Case II, n,a =
lZ(3600 – 20)

{

162 < Ill; ?%~ = WI{

for
180°<20<360°

(19)

Fig. 8. Graph for determining Herpin equivalent iudex.
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nl
3) Case III, nea = — (20) Then we have

11(20)

{

Cases I and III,
!lz > IZl; ~%1= ?~L

for
0 <20< 180°

for O <0<180°.

4) Case I\T, IZ.~ = ~z1k(3600 — 20) (21)

{

?’22 > 761; fat = ftL
for

180°<20<360° “

Curves (not normalized) for all four cases are pre-

sented in Fig. 6, when the two refractive indices are 1.38

and 2.3, respectively.

The equivalent electrical or optical thickness y, de-

fined by (15) and denoted as the HerPin Equivalent

Thickness, is shown in Fig. 9 for Cases I and 111 (i.e.,

0<20< 1800). Define the curves of Fig. 9 as

‘-y = 7(20) (23)

Cases II and IV, T(20) = 360° – 7(360° – 20) (24)

for 180°<20<360°.

V. REFLECTION hfAXIMA AND Ibl INIMA

IN THE PASS BAND

Suppose that the end media are both the same, ;:1S for

the characteristics in Fig, 3. Then the filter vrilll not

reflect whenever its total electrical or optical thickness

is a multiple of 180 degrees. Thus, if x== 8, we look Up

II on the ordinate scale at 22.5 degrees, 45 degrees, etc.,

up to 157.5 degrees, and read 26 on the abscissa,, The

lower values of 26 differ very little from ~, the first value

~ = 7(20). (22) being very close to 22.5 degrees for Y=: 0.6. Ho}vever,
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the last value is 143 degrees, differing appreciably from

157.5 degrees. Then we can convert to a normalized

frequency scale, with 20= 180 degrees corresponding to

a normalized frequency of unity; knowing the symmetry

of Fig. 9 (which is as for Fig. 7), we can find all the zero-

reflection frequencies in Fig. 3.

The position of the edge of the pass band can also be

estimated from Fig. 9. The filter will be matched just

outside the stop band, when its electrical or optical

total thickness is (x – 1) times 180 degrees. Thus, if x = 8,

and r = 0.6, one looks up the ordinate at 180/x= 22..5 de-

grees below 180 degrees; then one finds on the abscissa

the value 143 degrees, which is 37 degrees below 180

degrees. For a high-pass filter, the pass band would then

be expected to extend down to a normalized frequency

of 1 +37/180= 1.21. This is in fair agreement with

Fig. 5 of [16]. At the point where the ordinate scale

reaches 180 degrees in Fig. 9, which is also given by (3),

the filter already attenuates appreciably,

The positions of the reflection maxima can also be

found with the aid of Fig. 9. As before, consider identical

end media. Maximum reflection would occur for values

of y equal to an odd multiple of 90 degrees if the Herpin

equivalent index were independent of frequency. This

criterion enables one to predict all the reflection maxima

with very good (but not perfect) accuracy (since the

Herpin index does vary with frequency). The values of

the reflection maxima are determined from the maxi-

mum VSWR, which is very nearly equal to (n.~/fro) ‘2,

whichever sign makes it greater than unity, since the

filter is then very nearly an odd number of quarter

wavelengths long. The Herpin equivalent index Weq can

be determined from Figs. 8 or 6, and no is the refractive

index of the end media.

VI. OBLIQUE ANGLE OI? INCIDENCE

Dielectric plates or layers can also be used as beam

splitters or quasi-optical directional couplers or filters

[19], [20]. The same basic theory still applies for that

case also. However, the refractive index has to be re-

placed by a function of the angle of incidence and is

different for parallel and normal polarizations.

When the electric vector is normal to the plane of in-

cidence (TE wave), then it can be shown [4] that the

effective refractive index, neff, of a medium is

neff = n cos i, (25)

where n is the actual refractive index of the medium,

and i is the angle of incidence inside the layer.

Similarly, when the electric vector is parallel to the

plane of incidence (TM wave), it can be shown [4] that

?’feff = ?L/COS ‘i. (26)

When i equals zero (normal incidence), both equations

reduce to the statement that the effective refractive in-

dex of the medium is equal to n.

The effective thickness of each layer for oblique inci-

dence is the actual thickness of the layer multiplied by

the cosine of the angle of incidence inside that layer.

For example, if there were only a single plate of thick-

ness d, its effective thickness is given by d cos t, where t

is the angle of transmittance (which is the angle of in-

cidence inside the plate, and is given by Snell’s law [4]).

VII. CONCLUSIONS

The filter properties of dielectric multilayers were dis-

cussed. The concept of Herpin equivalent layer makes

it possible to simulate refractive index values that may

not be physically realizable. Design equations and de-

sign curves were presented, They can be used to mini-

mize the pass-band reflection by adjusting the layer

thicknesses [16]. The theory is also applicable to beam

splitters or directional filters.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

O. S. Heavens, Optical Pro$wties of Thin Solid Film. London:
Butterworth, and ATew York: Academic Press, 1955.
A. Vasitek, Optics of Thin Fihzs. Amsterdam: North-Holland
Publishing Company, and New York: Interscience Publishers,
1960.
P. W. Baumeister, Handbook of Optical Design, M IL-Handbook
No. 141, 1962, October 5, ch. 20, obtainable from Control
Center 550, Frankf ord Arsenal.
M. Born and E. Wolf, P~inci@es oj O@ics. New York: Pergamon
Press, 1964, Section 1.6.
A. F. Harvey, Microwave .Engiwee~ing. New York: Academic
Press, 1963.
A. F. Harvey, “Optical techniques at microwave frequencies, ”
PYOC. I. E. E., Part B, vol. 106, pp. 141-157, March 1959.
L. Young and P. W. Baumeister, “Microwave and optical inter-
ference filters-some similarities and differences, ” NEREM
Record, vol. 5, pp. 8-9, 1963.
W. Culshaw, “Reflectors for a microwave Fabry-Perot inter-
ferometer, ” IRE Trans. on Microwave Theory and Techniques,
vol. MTT-7, pp. 22 1–22$ April 1959.
D. V. Geppert, “Image-Impedance design of TEM mode micro-
wave filters, ” Sylvania Electronic Defense Laboratory, P.O.
Box 205! Mountain Vijsw, Calif., November 1, 1955.
A. Herpm, “Optique Electromagn6tiq ue, ” Contptes Rendw, vol.
225, pp. 182–183, 1947.
L. I. EDstein. “The desirm of ontical filters.” ~. Obt. Sot. Am..
vol. 42, App. 806–810, Nov;mber ~952. ‘ ‘
P. W’. Baumeister, “Design of multi-layer filters by successive
approximations, ” .T. Opt. Sot. Am vol. 48, pp. 955–958, Decem-
ber 1125Rw-. ., ---

P. W. Baumeister and J. M, Stone, “Broad-band multilayer
film for Fabry-Perot interferometers, ” -T. Opt. Sot. Am., vol. 46,
pp. 228–2?9, March 1956.
A. M. Ermolaev, I. M. Minkov, and A. G. Vlasov, “Method for
the calculation of a multilayer coating with a given reflectivity, ”
Optzka I Spektroskopiya, vol. 13, English Translation, pp. 142-
146, August 1962.
R. S. Sokolova and T. N. Krylova, “Multilayer dielectric sys-
tems with films of unequal optical thickness, ” O@ka I S@ektro-
skopiya, vol. 12, English Translation, pp. 437–440, June 1962.
L, Young and E. G. Cristal, “On a dielectric multilayer filter by
Baumeiste{, ” A@@. Optics, to be published, January 1966.
P. H. Bermng, “Use of equivalent films in the design of infrared
multilayer antireflection coatings, ” ~. Opt. SoC. Am., vol. 52,
pp. 431–436, April 1962.
E. A. Guillemin, Communication Netwo?ks, New York: 1935,
pp. 161–184.

J. J. T?ub, H. J. Hindin, and G. P. Kurpis, “Quasi-optical
wavezmde filters. ” IEEE Trans. on &ficrowave Theorv and
Tech;z’ques (Correspondence), vol. MTT-12, pp. 61 8–6 19, No-
vember 1964.
R. Levv. “Directional coddlers. ” in A dnances in Microwaves.
vol. I, ~.’Young, Ed., New York; Academic, to be published. ‘
C. Dufour and A. Herpin, “Propagation des ondes 41ectro-
magnc!tiques clans un milieu stratifid ptriodique transparent, ”

Revae d’Optique, vol. 32, pp. 32 1–348, June 1953,


